Measurement of same-sign WW diboson production at 13 TeV with the ATLAS detector

Will DiClemente

DPF 2017

ATLAS Run 2

- ► ATLAS is one of the Large Hadron Collider's (LHC) two general-purpose detectors
- ▶ After successful data-taking campaigns at $\sqrt{s} = 7$ and 8 TeV, the energy was increased to $\sqrt{s} = 13$ TeV in 2015
 - \triangleright 3.9 fb⁻¹ collected in 2015
 - \triangleright 35.6 fb⁻¹ collected in 2016
 - ▶ 36.1 fb⁻¹ combined available for physics

(a) The ATLAS detector (CERN).

(b) Total integrated luminosity in 2016 (AtlasPublic)

Introduction

- $W^{\pm}W^{\pm}$ events can be produced in a variety of ways:
 - ▶ Vector boson scattering (VBS)
 - ► Electroweak (EWK) and QCD interactions
- ► Events produced via EWK VBS interactions are particularly interesting
 - ► Sensitivity to EWK symmetry breaking
 - ► Sensitivity to anomalous quartic gauge couplings

A selection of different production methods for a $W^{\pm}W^{\pm}$ event.

Why Same Sign?

- ► Much cleaner backgrounds
 - ▶ Especially diboson, Z+jets, and ttbar
- ► Excellent ratio of EWK to QCD production compared to other VBS/VBF analyses

Final state	Process	VV-EWK	VV-QCD
$\ell^{\pm}\nu\ell'^{\pm}\nu'jj$ (SS)	$W^{\pm}W^{\pm}$	19.5 fb	18.8 fb
$\ell^{\pm}\nu\ell'^{\mp}\nu'jj$ (OS)	$W^\pm W^\mp$	91.3 fb	3030 fb
$\ell^+\ell^- u' u'jj$	ZZ	2.4 fb	162 fb
$\ell^{\pm}\ell^{\mp}\ell'^{\pm}\nu'jj$	$W^\pm Z$	30.2 fb	687 fb
$\ell^{\pm}\ell^{\mp}\ell'^{\pm}\ell'^{\mp}jj$	ZZ	1.5 fb	106 fb

Cross sections of EWK and QCD production for several different final states relevant to VBS at $\sqrt{s}=8$ TeV. Cross sections from leading-order Sherpa Monte Carlo with generator-level cuts applied.

Identifying EWK VBS events

➤ VBS events tend to have two high-energy forward jets with large separation

Topology of a VBS event.

▶ Di-jet separation ($|\Delta y(jj)|$) and di-jet mass (M(jj)) discriminate between QCD and EWK events

Generator level comparisons of EWK and QCD production (normalized to area).

Interference between EWK and QCD

- Estimate size of interference term using $pp \to W^{\pm}W^{\pm}jj$ events generated by MADGRAPH at $\sqrt{s} = 13$ TeV
- ▶ Subtract cross sections of three different samples:
 - ► All available diagrams
 - ► EWK production diagrams
 - ▶ QCD production diagrams
- ► Cross check using interference term calculated directly by MADGRAPH

Sample	xsec (pb)
All diagrams	0.3219 ± 0.0008
QCD	0.1148 ± 0.0003
EWK	0.1849 ± 0.0004
All-QCD-EWK	0.0222 ± 0.0009
INT (Madgraph)	0.0238 ± 0.0002

EWK/QCD interference estimated using Madgraph v2.4.0 in the VBS fiducial region. The interference is approximately 7% of the total cross section. Errors are statistical only.

Analysis Goal

- ► Evidence of $W^{\pm}W^{\pm}$ production seen in 20.3 fb⁻¹ of $\sqrt{s} = 8$ TeV ATLAS data
 - Expected $\sigma_{\rm fid} = 0.95 \pm 0.06$ fb in VBS signal region
- ▶ Measure cross section using 36.1 fb⁻¹ of $\sqrt{s} = 13$ TeV data
 - ▶ Monte Carlo study predicts $\sigma_{\rm fid} = 2.60 \pm .03$ fb in VBS signal region
- ► Analysis is still ongoing; signal region is currently blinded

(a) Inclusive signal region

(b) VBS region

Measured cross sections for $W^{\pm}W^{\pm} \rightarrow l^{\pm}l^{\pm}\nu\nu jj$ at $\sqrt{s}=8$ TeV compared to Standard Model predictions (arXiv:1611.02428).

Signal Definition

- ► Focusing on W-bosons decaying to $e + \nu_e/\mu + \nu_\mu$
- ▶ Separated into 4 channels: ee, $e\mu$, μe , and $\mu\mu$

$W^{\pm}W^{\pm}$ Signal Region		
2 high-quality leptons with $p_{\rm T} > 27~{\rm GeV}$		
Reject events with additional, looser leptons	diboson	
Require same-charge on signal leptons		
≥ 2 anti-kt jets with $p_{\rm T} > 25(30)~{\rm GeV-central(forward)}$		
Veto ee events within 15 GeV of Z -boson mass	Drell-Yan	
Missing transverse energy $E_{\rm T}^{\rm miss} > 30~{\rm GeV}$	neutrinos	
Reject events with a tagged b -jet	top	
Require di-jet invariant mass $M(jj) > 500 \text{ GeV}$		
Require di-jet rapidity $ \Delta y(jj) > 2.4$	VBS/EWK	

Definition of $W^{\pm}W^{\pm}$ signal events.

Backgrounds

- ▶ Many other processes can mimic our $W^{\pm}W^{\pm}$ signal
 - ▶ Prompt lepton: WZ, ZZ, ttbar+V, VVV
 - ► Charge mis-identification (a.k.a. "charge flip"): $W^{\pm}W^{\mp}$, Z/γ^* , ttbar
 - ▶ Non-prompt leptons (a.k.a. "fakes"): W+jets, ttbar, single top
- ▶ Use several different methods of measuring the backgrounds
 - ► Estimations from Monte Carlo
 - ▶ Data-driven correction factors to handle charge flip
 - ▶ Data-driven fake-factor to handle non-prompt leptons

$W^{\pm}W^{\pm}$ Same-Sign Events

- ▶ Pre-selected same-sign events (before any additional selection)
- ▶ Initial agreement with data is good
- ▶ At this stage, $W^{\pm}W^{\pm}$ signal completely dwarfed by backgrounds
- ▶ Different channels have varying amounts of each background
 - ► ee channel dominated by charge-flip (see plots below)
 - ightharpoonup e μ , μe and $\mu \mu$ channels have large contribution from fake leptons

Tri-lepton Veto

- ► Rejecting events with an additional lepton is very effective at reducing backgrounds from other multiboson processes, especially WZ and ZZ
- ▶ Can fail to identify a third lepton
 - ▶ It fails the selection criteria
 - ► It falls outside the accepted region of the detector
- ► Define a looser set of criteria for "veto" leptons
 - ▶ Lower $p_{\rm T}$ cut
 - Relax identification and isolation requirements

Effect of veto lepton $p_{\rm T}$ on significance $(\frac{\rm sig}{\sqrt{\rm sig+bkg}})$ when selecting same-sign events.

Tri-Lepton Control Region

- ▶ Diboson events make up one of the major backgrounds
- ► Contributions are estimated from Monte Carlo
- \blacktriangleright Tri-Lepton control region tests the modeling of \overline{WZ} and \overline{ZZ}
 - ▶ Require exactly one veto lepton that makes a Z-mass pair with a signal lepton.

Leading lepton $p_{\rm T}$ distributions in the Tri-Lepton control region.

Charge Mis-Identification

- ▶ Electrons have a chance to be reconstructed with the wrong charge
- ▶ Charge-flip is the dominant background for the *ee* channel
- ► The rate at which charge flip occurs in ATLAS has been measured and can be applied as a correction factor

Examples of charge-flipped electrons.

Accounting for Charge Flip

▶ Charge flip background is estimated using opposite-charge data corrected for the probability that an electron has the wrong charge

$$\omega = \frac{\epsilon_1(1-\epsilon_2) + (1-\epsilon_1)\epsilon_2}{(1-\epsilon_2)(1-\epsilon_1) + \epsilon_1\epsilon_2}$$

Charge flip rate $\epsilon_i(p_{\mathrm{T},i},\eta_i)$.

Di-lepton invariant mass in Z-boson events.

Status & Outlook

▶ Approximately $50 W^{\pm}W^{\pm}$ events to 150 background events expected in the signal region (predicted from Monte Carlo)

Signal Region	on
$W + \gamma/Z + \gamma$	13.5
WZ/ZZ	52.1
Top	1.0
Fakes	65.7
Charge-flip	17.3
Background	149.6
$W^{\pm}W^{\pm}$	50.4

Expected yields (all channels). Color coded to match plots.

Di-jet quantities for all channels in the signal region.

Conclusions

- ► Same-sign WW events are particularly interesting to study
 - ▶ Large ratio of EWK to QCD production
 - ▶ Sensitivity to EWK symmetry breaking, anomalous couplings
- ▶ Looking to build off of $\sqrt{s} = 8$ TeV cross section measurement
 - Expect greater sensitivity due to increased \sqrt{s} and luminosity
- ► Analysis still in progress
 - Signal region remains blinded

Backup Slides

QCD/EWK cross section generator-level cuts

- ► Sherpa leading-order at $\sqrt{s} = 8$ TeV
- ▶ $p_{\mathrm{T},l} > 5 \text{ GeV}$
- ▶ $M_{ll} > 4 \text{ GeV}$ (to suppress contributions from $\gamma *$)
- At least 2 jets with $p_{T,j} > 10 \text{ GeV}$

QCD/EWK interference generator-level cuts

- ► MadGraph v2.4.0
- ▶ Generated in a (currently outdated) version of the fiducial region:
 - ▶ $p_{T,l} > 25 \text{ GeV}$
 - ▶ $p_{T,i} > 30 \text{ GeV}$
 - ▶ MET> 40 GeV
 - ▶ $m_{ll} > 20 \text{ GeV}$
 - ▶ $m_{jj} > 500 \text{ GeV}$
 - ▶ $|\eta_j| < 4.5$
 - ▶ $\Delta R_{ll} > 0.3$
 - $\Delta R_{lj} > 0.3$

M_{ll} distributions in $e\mu$ and $\mu\mu$ channels

▶ (Using a different update of the fake-factor)

 $e\mu + \mu e$ - and $\mu\mu$ -channel events with pre-selected same-sign leptons.